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Abstract 

This paper presents a novel strategy of fault classification for the analog circuit under test (CUT). The proposed 
classification strategy is implemented with the one-against-one Support Vector Machines Classifier (SVC), 
which is improved by employing a fault dictionary to accelerate the testing procedure. In our investigations, the 
support vectors and other relevant parameters are obtained by training the standard binary support vector 
machines. In addition, a technique of radial-basis-function (RBF) kernel parameter evaluation and selection is 
invented. This technique can find a good and proper kernel parameter for the SVC prior to the machine learning. 
Two typical analog circuits are demonstrated to validate the effectiveness of the proposed method.  
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1. Introduction 
 

Faults classification is an important but complicated task in analog electronic circuits. 
Two methods, namely the Simulation-After-Test (SAT) and Simulation-Before-Test (SBT) 
[1], are prevalent now. Fault dictionary (FD), which belongs to the SBT method, seems to be 
a reliable and important approach in the domain of analog testing [2]. The conventional FD 
method usually calculates the Euclidean distances between the query sample and all the 
centroids of fault classes [3]. In this method, a smallest distance indicates an occurrence of 
fault or fault-free case. Considering the tolerance effect of components or measurement 
inaccuracies, the FD method always defines some tolerance limits, which can be applied to 
the samples in measurement space or feature space [4, 5]. Sometimes, these defined limits 
(especially for parametric faults) can overlap, and hence, bring difficulties and uncertainties to 
the consequent fault decisions.    

Focusing on these problems, fuzzy systems and neural networks (NN) [2, 6-9] are then 
employed to perform fault classification. These methods can achieve good performances, but 
they belong to the so-called non-deterministic methods [10]. For instance, in a fuzzy system, 
the designation of membership functions and inference rules depends on the experience of 
engineers, and thus, different designations will probably result in different fault decisions. 
The NN work well in the domain of analog circuit testing, but the NNs have many drawbacks. 
For instance, the back-propagation NN (BPNN), which is a widely used NN in analog or 
mixed-signal system testing, can be easily entrapped into the local minima in the training 
phase and different trainings will probably lead to different results. In order to improve this 
classifier, some additional and complicated measures always need to be taken. For instance, in 
[7], the authors use the genetic algorithm (GA) to optimize the training process of a classifier. 
The Radial-Basis-Function NN (RBFNN) is another well-known NN, and this NN is a local 
approximation network, whose number of hidden neurons will become very large even for a 
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moderate size of fault classes. Bayesian NN is another useful classifier when overlapped 
measurements are considered. This classifier is based on the probabilistic estimation and thus, 
a lot of fault feature samples are needed. Another drawback for these NNs is that many 
parameters (e.g. number of neurons and layers, activation functions and their parameters, etc.) 
need to be configured manually, and this will result in an unstable classifier structure.  

In this paper, we employ a one-against-one SVC to perform analog electronic circuit 
fault classification. The standard SVC can be viewed as a special NN, but it has some good 
characteristics, e.g., fast convergence to the global minima, less adjustable parameters (note: 
once the training parameters are determined, different trainings will result in identical results 
and from this point, this classifier is deterministic), excellent generalization capability, strong 
learning capability with small samples, etc. In the domain of analog testing, two important 
SVCs are available. In [10], Grzechca and Rutkowski employ the one-against-rest SVC to 
perform fault detection and localization task in filter and FPAA circuits. Salat and Osowski 
[11] adopt a one-against-one SVC to classify hard faults in analog filters and good results are 
achieved. In [12], a RC ladder network is diagnosed with the one-against-one SVC and in this 
case, the soft faults are considered. In [13], analog circuit fault detection is performed with a 
binary SVC. The SVC can also be applied to the fault diagnosis of high-frequency integrated 
circuits, for instance, the RF low noise amplifier can be diagnosed at the transistor level [14]. 
A simplified review of these literatures indicates that the SVC is applicable to analog circuit 
fault classification. However, in most of these investigations, only conventional SVCs are 
used and improvements for these classifiers are not considered. Focusing on these problems, 
we propose an improved one-against-rest SVC to test analog circuits in [15] and this 
improved SVC can reduce the testing time apparently. In addition, we proposed another SVC 
in [16], and this classifier utilized a fault dictionary and one-against-rest SVC to achieve good 
results, and at the same time, the testing time can be reduced significantly. This method can 
be extended to the one-against-one SVC, which, according to [17], is suitable for practical use. 
In addition, how to select a proper kernel parameter in SVC designation is very important, but 
this problem is not well addressed in our previous works. 

The presented method in this paper has two contributions. The first one is to improve the 
conventional one-against-one SVC to reduce the testing time. The second contribution 
depends on a proposed technique which can select a good kernel parameter of the SVC prior 
to the training. This second contribution can assure the SVC to have good generalization (i.e. 
diagnosis performance) without trainings for the optimal parameter. Hence, many calculations 
can be saved. This paper is organized in the following order. In section 2, the basic theory for 
SVC is outlined, and also in this section, the improvement for a one-against-one SVC is 
presented. The selection technique for the SVC kernel parameter is proposed in section 3. Our 
method is validated by the experiments from three cases in two circuits in section 4. Important 
conclusions are drawn in section 5. 
 
2. The proposed classifier 
 
2.1. Binary Support Vector Machines Classifier (BSVC) 
 

The standard support vector machines classifier, invented by Vapnik et al [18] , can 
perform binary classification. In this study, this classifier is called a binary support vector 
machines classifier (BSVC).  

Let { ( , )i iyx } (i=1, 2, …, G and G is the number of samples) be a set of training 
samples. Each sample d

i R∈x  is assigned to a binary set { 1, 1}iy ∈ + − , in which  label +1 and -
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1 indicates that training sample x belongs to the positive and negative patterns, respectively. 
Training of BSVC is a typical quadratic optimization problem, which tries to find the 
maximal margin between two groups of samples while the recognition error is minimized. 
Solving this optimization problem will need the anticipation of Lagrange Multipliers, slack 
parameters and penalty constant C. In order to find the solution, the so-called KKT condition 
must be met. Finally, the BSVC can perform pattern classification of a query sample x with 
the following decision function: 

 *

1

( ) ( ), ( )
svn

k k k
k

f y bλ φ φ
=

= < > +∑x x x , (1) 

where: 0kλ > is the Lagrange Multiplier corresponding to the kth support vector (SV) xk; yk is 
the label of the kth SV; <•,•> stands for the inner product;  is a nonlinear mapping function 
which can map the samples in the measurement space to a high-dimensional space, where the 
samples can become linear separable; svn is the number of the SVs; *b is the bias of the 
decision hyper-plane. 

Generally, the explicit expression form of  is hard to obtain, thus, the kernel function 
( , ) ( ), ( )K φ φ=< >x y x y is introduced to replace the inner product and then, the assignment of 

x  can be determined with:  

 *

1

( ) ( , )
svn

k k k
k

f y K bλ
=

= +∑x x x . (2) 

In our experiments, the RBF function is considered. According to [19], this nonlinear 
kernel function can usually lead to a good performance:  

 2 2( , ) exp( | | / )i iK σ= − −x x x x , (3) 

where σ refers to the spread parameter of RBF function. 
 
2.2. The multi-class SVC 
 

The BSVC can perform binary classification, but this is not enough when it goes to a 
multi-class classification problem, such as analog faults classification. In order to solve a 
multi-class problem, one-against-rest SVC and one-against-one SVC can be employed. For 
the one-against-rest SVC with Winner Take All (WTA) rule, N BSVCs are constructed for N 
classes, and for each training process, the thi class is separated from the rest N-1 classes. In the 
decision stage, all decision functions are calculated to determine the assignment of x :  

 
1,2,...,

arg min[ ( )]i
i N

f
=

x , (4) 

where ( )if x is the decision function of the thi BSVC.  
The second conventional multi-class method is the one-against-one SVC. In the training 

stage, all possible pair classes are trained and altogether N(N-1)/2 BSVCs are constructed. In 
the decision stage, Max-wins strategy is adopted. The decision function for the BSVC, which 
is formed by class i and j (i≠j), can be expressed as:  

 
,

, , , *
,

1

( ) ( , )
i j
svn

i j i j i j
ij k k k i j

k
f y K bλ

=

= +∑x x x , (5) 
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where: ,i j
svn  is the SV number, ,i j

kλ is the Lagrange multiplier of the thk  SV, ,i j
ky  is the label of 

the thk  SV, *
,i jb is the bias of this BSVC.  

In the applications of analog faults classification, when the number of faults N becomes 
very large, one-against-one SVC will need too much BSVCs to perform fault decision and 
testing time consumed will become unendurable. In the domain of analog testing, the 
improvement of the one-against-one SVC for testing time reduction is seldom reported.  
 
2.3.  Principle of the proposed SVC 
 

The fault classifier to be improved in our experiments is based on the one-against-one 
SVC. The conventional one-against-one SVC calculates all the decision functions for each 
testing and this seems to be unnecessary for most of diagnosis cases. In fact, it is only some of 
the decision functions, other than all the decision functions, that really determine the 
assignment of the query sample. This can be explained with Fig. 1.  

 
Fig. 1. One-against-one SVC for four classes in the high-dimensional space. 

Fig. 1 illustrates four fault classes (‘1’,’2’,’3’ and ‘4’ respectively) in the high-
dimensional space via the mapping function φ . In this case, the one-against-one SVC will 
need at least 6 BSVCs for pattern classification. Let BSVCij be the BSVC that separates class 
‘i’ and ‘j’ (i=1, 2, 3 and i<j), and fij the decision function of BSVCij, whose optimal decision 
hyper-plane is indicated with a dashed line.  In our study, set the label of class ‘i’ and the 
other class ‘j’, to be -1 and +1, respectively. Assume to test a sample x (shown in Fig. 1) 
belonging to class ‘1’, and the outputs (i.e. the signal of fij) for these BSVCs are as follows: 
f12=-1, f13=-1, f14=-1, f23=+1, f24=+1, f34=-1. Hence, the votes for class ‘1’ is 3, the votes for 
class ‘2’ is 0, the votes for class ‘3’ is 2 and the votes for class ‘4’ is 1.  

According to the Max-wins strategy, the query sample should be assigned to the class 
which gets the most of votes. In this case, the votes of BSVCs for class ‘1’ are all valid 
(negative) and for the other classes, however, some of their votes are invalid. This important 
information indicates that the query sample can be determined directly by the votes of the 
BSVCs corresponding to some class, not necessarily all the class concerned. If a set of 
BSVCs corresponding to a certain class gives effective votes (a threshold can be defined to 
control this effectiveness), then, the class assignment can be determined directly without 
calculating the subsequent decision functions. This method will save many calculations and 
hence, the testing time can be reduced.  

But, a problem arises, namely that which set of BSVCs should be selected and calculated. 
We can reuse the pre-processing method from [16]. Firstly, we use a FD (FD1) with 
Euclidean distance match to find this set of BSVCs. FD1 contains the centroids of all fault 
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classes. Assume each fault class to contain L training samples. The centroids are defined as 
below:  

 
1

1 L
j

j i
iL =

= ∑C x , (6) 

where j
ix is the thi training sample of fault class j ( 1,...,j N= ).  

Secondly, the conventional one-against-one SVC is designed and each BSVC is trained 
and saved. All BSVCs form the second FD (FD2), as shown in Fig. 2. For the convenience, 
let BSVC ( )ij i j<  be the BSVC which separates fault class i from class j, fij be the decision 
function of BSVCij . The fault decision can be divided into following steps:  

(1) Input query sample x to be tested; 
(2) Calculation of Euclidean distances di (i=1,…,N) between x and all centroids via FD1 

according to the equation as follows: 
 | |j jd = −x C  (7) 

(3) Sort di in the ascending order, in which the corresponding  index is saved to an array 
index[j] ; 

(4) Initialize j=1;  
(5) k=index[j] and implement calculations of f1k, f2k, …, fkN via FD2.  
(6) If x∈fault class k, then quit; else go to next step (7); 
(7) Let j++; if j>N, go to next step (8); else go to step (5); 
(8) Max-wins strategy is invoked to determine the assignment of x. 
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Fig. 2. Construction of two fault dictionaries.  

Generally, the closer the Euclidean distance is, the higher the probability with which x 
belongs to the corresponding fault class. In step (6), look up the anticipated BSVCs in FD2 to 
implement fault classification with the indicator function. The BSVCs involved here are 
related to fault class fk (2<k<N):  

 

1 1

2 2

( ) ( ( ))
( ) ( ( ))

...
( ) ( ( ))

k

k

N kN

sf x sign f
sf x sign f

sf x sign f

=
=

=

x

x

x

. (8) 

Also in this step, the vote strategy needs to be implemented. If the votes of fault class k 
exceeds some threshold Thres, we simply assign x to fault class k, otherwise the next loop 
will begin. Sometimes, x cannot be assigned to any of the available fault classes with this 
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decision method and then, for this case, the program will switch to step (8), i.e., the 
conventional one-against-one SVC with Max-wins decision adopted in [17].  

Basically, the one-against-one SVC adopts the decision strategy with Max-wins, and all 
BSVCs take part in each fault decision. From this point, the conventional one-against-one 
SVC is a classifier with stable structure (note: this conclusion also goes to the conventional 
one-against-rest SVC). Our proposed method, however, only employs a small portion of 
BSVCs to perform the classification task, hence the computational complexity will be 
reduced with no doubt. In our proposed method, the candidate BSVCs to be calculated are 
mainly determined by the FD1 and this classifier has an unstable structure, thus, the 
performance seems to be unstable. Despite this, according to the principle of the proposed 
classifier, the query sample can be claimed to be a certain fault class only when the votes 
reach to some predefined threshold Thres. Apparently, a larger Thres can assure the SVC to 
classify the sample with high probability correctly. In this paper, this threshold is set to be N-1 
directly and in our experiment, a smaller Thres will result in poor classification performance. 
 
3. Kernel parameter selection algorithm 
 

Two parameters are crucial to the generalization capability of SVC. One is the kernel 
function parameter and the other is the penalty constant C. The latter is usually set in the 
training phase, and it controls the balance of maximal margin and the classification error. In 
this paper, for all the classifiers, C equals to 100, with which good results can be obtained.  

This paper proposes an evaluation method of the kernel function parameter. This method 
is enlightened by the SVC theory. According to the principle of SVC, binary classes can be 
separated easily if the distance between them is large. For instance, Fig. 3 gives an illustration 
which describes binary classes (‘t’ and ‘y’) mapping from the measurement space to a high-
dimensional space, via some mapping functionφ.   

 

Fig. 3. Measurement space is converted to a high-dimensional space via the mapping function φ. 

In the measurement space, two classes are nonlinear separable (the decision boundary is 
a nonlinear dashed curve) and in the high-dimensional space, these samples are linear 
separable (the optimal decision boundary is a dashed beeline in this figure, and the samples 
located on two beelines are support vectors of two classes).  

Generally, a large margin (shown in Fig. 3) always means a large distance of centroids 
(shown in Fig. 3) of two classes. In other words, a large distance of centroids of two classes 
also indicates a large SVC decision margin. Here, we employ the Euclidean distance between 
the centroids of two classes to evaluate the margin coarsely, namely, the generalization 
capability of SVC. The Euclidean distance evaluation should be implemented in the high-
dimensional space, not in the measurement space, because in the high-dimensional space, 
most of the samples belonging to the same class will gather on one side of the decision 
beeline. Also, calculation of Euclidean distance in the high-dimensional space will establish a 
qualitative bridge between the kernel parameter and the generalization capability of SVC.  
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Let k
ix be the thi sample belonging to fault class k. Then define the Euclidean distance 

hdjk between two fault classes in the high-dimensional space as:  

 | ( ) ( ) |jk j khd φ φ= −C C . (9) 

Usually, the mapping function is impossible to obtain and thus, the following trick is used:  

 2| ( ) ( ) |jk j khd φ φ= −C C .  

Considering ( , ) ( ), ( )K φ φ=< >x y x y  will lead to the following expression: 
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 (10) 

Hence, considering equation (3), the Euclidean distance measure in the high-dimensional 
space turns out to be: 
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 (11) 

The above equation contains the kernel parameter σ and it can evaluate the effect of 
kernel parameter on one BSVC, which contains class j and k. The proposed SVC is composed 
of many BSVCs. Hence, the selection rule should be applied to all the BSVCs. Generally, a 
good kernel parameter should make all the BSVCs have large distances and thus a good 
generalization capability for the SVC can be achieved. Based on these considerations, the 
following rule needs to be constructed:  

 

                                        
 

In the above expression, 1[ ]
( 1) jk

j k
hd

N N − ∑∑
 can evaluate the effect of kernel 

parameter on the whole SVC and the second part (i.e. min{ }jkhd ) can evaluate the effect of 
kernel parameter on the BSVC under worst case. Thus, a larger J indicates that the 
corresponding kernel parameter can assure the SVC to have a good generalization capability. 
The proposed technique of kernel parameter selection is implemented in the following steps: 

(1) Confine the kernel parameter zσ to some range, for example, in this paper, zσ ∈{z=1, 
2, … ,10 | 0.01, 0.1, 1, 2, 4, 8, 16, 32, 64, 128}; 

(2) initialize z=1; 
(3) Calculate the Euclidean distances z

jkhd  in the high-dimensional space for all BSVCs 
under zσ according to equation (11); 

(4) Calculate Jz according to equation (12); 
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(5) if z <10, z=z+1, go to step (3); else, go to step (6); 
(6) Select the best kernel parameter according to: max( )z z

z
Jσ = .  

 
4. Case study 
 
4.1. A nonlinear circuit 
 

The first circuit is a differential amplifier (DAmp) with 2N2222 transistors (Q1 and Q2, 
shown in Fig. 4) and in this nonlinear circuit, Q3 and Q4 form a basic current mirror as the 
current bias of the circuit. A sine wave Ui (amplitude: 50 mV, frequency: 10 Hz) is used to 
excite the circuit and the responses are collected via Vout as shown in this figure.  

 
Fig. 4. A differential amplifier.  

For this circuit, soft faults for resistors (Rc1, Rc2 and Rb) are considered because these 
soft faults can make the working point of the circuit shift. In addition, the transistors are prone 
to getting faulty, and hence, hard faults for the transistors (Q1~Q4) are designed. In order to 
simplify the problem, only the single faults are considered. Sometimes, different faults can 
result in identical circuit responses, and these faults are partitioned into the so-called 
ambiguity group (AG). Considering the AGs together with the tolerance considerations, this 
circuit can generate altogether 14 fault classes which are described in [16] in details.  

According to the operation principle of this circuit, the waveform of Vout under normal 
condition is cyclic when the input stimulus is considered. When the circuit is faulty, its 
operation point will change and thus, the waveforms of Vout will become different. Three 
simple features in the time domain are extracted:  

[f0, f1, f2] 
where, f0=min(S) can extract the minimal value from the original sample sequence S; 
f1=max(S) can extract the maximal value from S; f2=mean(S) is the mean value of S. 

Although the extracted fault features are simple, they are quite effective in future pattern 
classification.  

 
4.2. A linear circuit 
 

Another analog circuit is used in our study to validate the proposed method. The used 
circuit is a filter, whose nominal values for the components are shown in Fig. 5. This circuit is 
composed of four functional modules, whose outputs are labelled with u1, u2, u3 and u4, 
respectively. The final output from amplifier Q4 will function as a high-pass-filter (HPF). The 
node u4 is assumed to be accessible. The nominal tolerances for the resistors and capacitors 
are 5% and 10%, respectively.  
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Fig. 5. An analog filter.  
 

In this experiment, R1, R2, R3, R4, C1 and C2 are to be diagnosed because these 
components can affect the output of the circuit significantly.  

 
4.2.1. Simulation experiment 
 

In this experiment, the tolerances for the components are considered by using Monte 
Carlo analysis in the Pspice software. The fault classes and fault models for the faulty 
components are identical to those described in [8] and [16], respectively.  

In this investigation, the wavelet decomposition (WD) is used to extract the features for 
the faulty circuit. We adopt Haar function as the mother function of the WD because this 
function is suitable for extracting faulty features from the circuit stimulated by a narrow pulse 
[8]. The WD is implemented from level one to level five and only the approximation 
coefficients at each level are retained.  

In order to compress the fault information further, the approximation coefficients are 
used to calculate the so-called energy features [5]. Hence, the size of the fault feature is five.  

 
4.2.2. Actual experiment 
 

In order to investigate the effectiveness of our proposed method in a more practical way, 
we try to collect real data of the actual circuit and implement the verification experiment. 
Considering the difference between the simulated circuit and actual circuit [8], we did not use 
the simulated data to perform the faults classification for an actual circuit. Hence, we will 
have to collect the actual data to perform machine learning.  

We designed the PCB of the circuit and the actual values of components were measured 
with Agilent 4263B (a LCR measurement instrument). The actual values of the components, 
as well as their fault values are all listed in Table 1. Each component will generate soft faults 
which are higher or lower than its nominal value (indicated with “↑” and “↓” respectively). 
The health state of the CUT can also be viewed as a special fault class “nf”. Thus, altogether 
13 fault classes need to be classified.  

In this experiment, the tolerances for the components are not considered. However, the 
effect of various noise, A/D converter precision errors, power voltage fluctuations, etc, can be 
viewed as an equivalent of tolerance.  

The stimulus generated by the HP 33120A is a pulse with 10 sµ duration and 5 V peak. 
In order to generate such a stimulus with narrow duration, this instrument works under burst 
mode. For each fault class, 100 samples are generated while the faulty component value is set.  
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Table 1. Fault classes for the second CUT. Actual and fault values are also specified. 
 

Order Fault class Actual value Fault value 

1 nf - - 
2 R1↓ 6.2 kΩ 3 kΩ 

3 R1↑ 6.2 kΩ 15 kΩ 

4 R2↓ 6.2 kΩ 2.43 kΩ 
5 R2↑ 6.2 kΩ 18 kΩ 

6 R3↓ 6.2 kΩ 3.8 kΩ 
7 R3↑ 6.2 kΩ 12 kΩ 

8 R4↓ 1.6 kΩ 750 Ω 

9 R4↑ 1.6 kΩ 2.5 kΩ 

10 C1↓ 5 nF 2.36 nF 
11 C1↑ 5 nF 9.47 nF 

12 C2↓ 4.6 nF 2.3 nF 
13 C2↑ 4.6 nF 14.9 nF 

 
The data acquisition task is implemented with a digital signal controller (DSC) 

TMS320F28335, whose working performance is configured to be 150 MIPS. We use two 
A/D channels to collect fault samples. The first channel is to track the rising edge of the input 
stimulus and then, the second channel is triggered simultaneously to acquire the output of the 
circuit for 128 consecutive dots. For each fault class, 100 samples are collected. 

Fig. 6 gives a sample illustration for each fault class. We can observe from the faulty 
waveforms of the circuit that a different fault class will result in different waveforms. Still, we 
adopt the feature extraction of Haar WD technique, which is identical to that described in the 
simulated filter.  

 

 
 

Fig. 6. One sample illustration for each fault class. 
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4.3. Results 
 

We write Matlab7.0 codes for all classifiers in terms of sample pre-processing, training 
and testing, etc. All codes run on a P4 personal computer with 2.8 GHz dual CPUs and 2 GB 
RAM. Our running system is Windows XP.  

Before the machine learning, the feature set should be normalized to have zero mean and 
unitary variance. Second, the whole feature set is divided into two parts: training set and 
testing set. The training set is used to generate two FDs and the centroids of fault classes. The 
testing set is used to evaluate the generalization capability of the SVC.  

In three cases for two circuits, each fault class will contribute 10 samples to form the 
training set and the remaining samples are for next testing. The algorithm for kernel 
parameter selection is applied to the training set for the circuits, and the final evaluation 
values for rule Jz are listed in Table 2. For each circuit, the maximal Jz is marked in bold and 
italic font.  

 
Table 2. Kernel parameter selection for three cases. 

 

 
 

 

In order to illustrate the effectiveness of the proposed kernel parameter selection 
technique, exhaustive searching for the optimal parameter is performed. In fact, the SVC 
training (C=100) is implemented for ten times corresponding to the kernel parameters listed in 
Table 2. After each training, the testing set is then utilized to examine the generalization 
performance of the conventional one-against-one SVC. The results are given in detail in  
Table 3, in which the best results are labelled in bold and italic font.  

 
Table 3. The SVC performance with various σ for three cases (TA: testing accuracy). 

 

 
 

 

It is apparent that for a certain training set, the SVC will probably have several optimal 
kernel parameters. For instance, in the case of actual HPF, whether the kernel parameter is 
0.01 or 0.1, the SVC can achieve the best classification accuracy with 98.6%. Thus, these 
optimal kernel parameters form an optimal set {0.1, 1}. Our selection algorithm claims that 
the selected kernel parameter is 0.1, which belongs to the optimal set. These above results 
indicate that our proposed algorithm can select a good (or even optimal) kernel parameter.  

In addition, we also compare the proposed method with several other methods in terms 
of testing time (TT) and testing accuracy (TA). These methods include the conventional one-
against-rest SVC, the conventional one-against-one SVC, the method used in [15] and the 
method used in [16]. For the one-against-rest SVC in two circuits, the kernel function (RBF) 
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parameter is 0.1 with which the best result can be achieved. The results for several methods 
are listed in Table 4.  

 
Table 4. The classification performance comparison for several methods in three cases. 

 

Circuit Method  TA (×100%) TT (seconds) 

DAmp 

One-against-rest SVC 0.952 8.322 

the method in [15] 0.945 4.824 

The method in [16] 0.969 1.5951 

One-against-one SVC 0.973 40.009 

the proposed method 0.973 6.268 

(Simulated) 
HPF 

One-against-rest SVC 1 7.5796 

the method in [15] 1 4.1189 
The method in [16] 1 1.023 

One-against-one SVC 1 37.261 
the proposed method 1 5.3645 

(Actual) 
HPF 

One-against-rest SVC 0.979 24.471 

the method in [15] 0.980 13.262 

The method in [16] 0.980 4.0337 

One-against-one SVC 0.986 90.998 
the proposed method 0.986 15.124 

 
The results by two circuits show that the one-against-one SVC achieves the best fault 

classification performance, but it consumes a long testing time. Our presented method can 
reduce the testing time significantly, while the diagnosis performance remains unchanged. 
The discrepancy between the test time (i.e. TT) vindicates the effectiveness of the presented 
method.  

The data in Table 2 and Table 3 indicate the presented parameter selection technique for 
the SVC is effective. This technique can select a good kernel parameter because it considers 
the BSVC classification principle and the structure of the subsequent SVC which is composed 
of many BSVCs. In addition, the presented method only uses simple equations to obtain the 
kernel parameters, avoiding exhaustive searching and thus it can save many training 
computations. In our experiments, we observed that the conventional method could find a 
proper kernel parameter at the cost of many minutes by using the n-fold (n≥2) cross-
validation technique (In this method, the training set is split into n parts. In each training 
process, one part is selected as the training set, and the others are used for testing sets. 
Exhaustive searching within the whole parameter range is performed. Finally, the averaged 
testing accuracy is used to evaluate the goodness of the kernel parameter and the kernel 
parameter corresponding to the best accuracy is selected to be optimal). However, our 
presented method can use only several seconds to find a good parameter.  

The testing results in our experiments illustrate that the SVC is applicable to analog fault 
classification. Thus, in the domain of analog circuit fault diagnosis, the SVC can be 
considered to replace the NN, which is a widely used fault classifier. For example, in 
diagnosing the simulated HPF, the testing accuracy can get a perfect 100% for all the 
classifiers; in diagnosing the actual HPF, the SVC in Table 4 can achieve a classification 
accuracy of near or above 98% with 10 training samples for each fault class. The NN in [8], 
however, employs 20 samples for each fault class to perform training. Each sample is also 
with five wavelet features and the designed two-layer feed-forward NN classifier can achieve 
95% classification accuracy in diagnosing the same actual circuit.  
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5. Conclusions 
 

In our research, we mainly investigate the performance of the support vector machines 
classifier in terms of analog fault classification technique. Conclusions can be drawn by 
reviewing the above results: 

– The conventional one-against-one SVC needs too much time to perform fault 
decision work with Max-wins strategy. We improved it in this study. In our 
investigations, the improved classifier can achieve a very close or even identical 
performance to the conventional one-against-one SVC, but needs far less 
computational complexity to perform classification operations. Thus, the presented 
classifier can be used as a substitution for the conventional one-against-one SVC.  

– In our kernel parameter selection algorithm, the RBF kernel function is considered 
because this type of kernel function can achieve good classification performance. 
With the proposed parameter selection algorithm, we can easily obtain a sub-optimal 
or even optimal parameter (i.e. the width of the RBF) without any additional machine 
learning, because the presented method is enlightened by the margin theory of SVC. 
In theory, a large SVC margin always leads to a good generalization capability for 
this classifier. This technique is simple but effective, and it is not addressed in our 
previous works.  

– The SVC is suitable for faults classification of analog electronic circuits and it can 
replace the conventional NN in the domain of analog testing and diagnosis.  

Future work will extend the presented technique to other SVCs. Also, how to enhance 
the reliability of the kernel parameter selection rule will also be envisaged.  
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